xét hàm số : y=\(\sin\left(lnx\right)+\cos\left(lnx\right)\) ta có
y'=\(\frac{1}{x}\cos\left(lnx\right)-\frac{1}{x}\sin\left(lnx\right)=\frac{\cos\left(lnx\right)-\sin\left(lnx\right)}{x}\)
xét hàm số : y=\(\sin\left(lnx\right)+\cos\left(lnx\right)\) ta có
y'=\(\frac{1}{x}\cos\left(lnx\right)-\frac{1}{x}\sin\left(lnx\right)=\frac{\cos\left(lnx\right)-\sin\left(lnx\right)}{x}\)
tìm đạo hàm của hàm số sau
y=\(\sin\left(\cos^2x\right)\cos\left(\sin^2x\right)\)
tìm y'
a) \(y=sin^3x\)
b) \(y=cos^3x\)
c) \(y=sinx.cos^2x\)
d) \(y=\sqrt[3]{x}+\sqrt[3]{\left(x+1\right)^2}\)
Tính đạo hàm:
1) \(y = \sin^2 \sqrt {4x+3}\)
2) \(y = \dfrac{3}{4}x^4 - \dfrac{34}{\sqrt{x}} + \pi\)
3) \(y = \sqrt{\dfrac{\sin4x}{\cos(x^2+2)}}\)
4) \(y = \dfrac{1}{\sqrt{\sin^2(6-x)+4x}}\)
5) \(y = x.\sin^2\left(\dfrac{2x-1}{4-x}\right)\)
6) \(y = \dfrac{4}{3}x^3 + \dfrac{3}{2\sqrt{x}} + \sqrt{2x}\)
7) \(y = \sqrt{\cot^3(x^2-1)} + \left(\dfrac{\sin2x}{\cos3x}\right)^4\)
8) \(y = \dfrac{\tan3x}{\cot^23x} - (\sin2x + \cos3x)^5\)
9) \(y = \cot^65x - \cos^43x + \sin3x\)
cho hàm số f(x)=\(\left(sin^23x-4\right)^5\) có đạo hàm là \(f'\left(x\right)=k\left(sin^23x-4\right)^4.sin3xcos3x\). hỏi k bằng bao nhiêu
1/ Tính đạo hàm:
\(y=\left|x-1\right|\left(x\ne1\right)\)
bang 2 cach
2/ Dao ham:
\(y=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}\cos x}}}\left(x\in0;\pi\right)\)
Giải phương trình f'(x) = g(x) với
a) \(\left\{{}\begin{matrix}f\left(x\right)=sin^43x\\g\left(x\right)=sin6x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}f\left(x\right)=sin^32x\\g\left(x\right)=4cos2x-5sin4x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}f\left(x\right)=2x^2cos^2\frac{x}{2}\\g\left(x\right)=x-x^2sinx\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}f\left(x\right)=4xcos^2\frac{x}{2}\\g\left(x\right)=8cos\frac{x}{2}-3-2sinx\end{matrix}\right.\)
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
Y = Sin3 \(\left(\sqrt{X^2}+2017\right)\)
Tính đạo hàm