\(Y=\frac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\frac{2}{4+\sqrt{6+2\sqrt{5}}}\)
\(=\frac{2}{4+\sqrt{5+2\sqrt{5}+1}}\)
\(=\frac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\frac{2}{4+\sqrt{5}+1}=\frac{2}{5+\sqrt{5}}\)
\(Y=\frac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\frac{2}{4+\sqrt{6+2\sqrt{5}}}\)
\(=\frac{2}{4+\sqrt{5+2\sqrt{5}+1}}\)
\(=\frac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\frac{2}{4+\sqrt{5}+1}=\frac{2}{5+\sqrt{5}}\)
Rút gọn biểu thức :
a,\(\frac{2+\sqrt{3}}{2-\sqrt{3}};\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\)
b,\(\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
c,\(\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
d,\(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}\)
Tính \(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
1/\(\frac{4\sqrt{2}}{2+\sqrt{2}}-\frac{4\sqrt{2}}{2-\sqrt{2}}\)
2/ \(\frac{2}{\sqrt{2}}+\sqrt{2}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
3/ \(9\sqrt{\frac{2}{3}}+5\sqrt{54}-\sqrt{\frac{1}{2}-\frac{1}{3}}\)
4/ \(\sqrt{4+2\sqrt{2}}.\sqrt{4-2\sqrt{2}}.\left(\sqrt{8}-\sqrt{2}\right)\)
5/ \(\sqrt{14-6\sqrt{5}}+\sqrt{3-2\sqrt{2}}+\sqrt{7-2\sqrt{10}}\)
Rut gon bieu thuc:
a) (2-\(\sqrt{3}\))\(\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
b) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
c) \(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}-\sqrt{3-2\sqrt{2}}\)
trục căn thức ở mẫu :
a,\(\frac{3}{\sqrt{5}};\frac{2\sqrt{3}}{\sqrt{2}};\frac{a}{\sqrt{b}};\frac{x+1}{\sqrt{x^2-1}}\)
b,\(\frac{1}{\sqrt{3}+\sqrt{2}};\frac{2}{2-\sqrt{3}};\frac{\sqrt{2}+1}{\sqrt{2}-1};\frac{3\sqrt{2}}{\sqrt{3}+1}\)
c,\(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
d,\(\frac{1}{\sqrt{2\sqrt{3}-\sqrt{2}}.\sqrt{2}.\sqrt{\sqrt{2}+\sqrt{3}}}\)
Các bạn giải gấp cho mk những câu này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Thực hiện phép tính sau đây
\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(\left(\sqrt{12}+2\sqrt{27}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
\(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
Bài 1: Cho a = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
CMR a2 -2a-2=0
Bài 2 Cho B = \(\frac{1+\sqrt{x+1}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\)
Tính B sau khi thay x = a = \(\frac{\sqrt{3}}{2}\)
Bài 3: hãy biểu diễn \(\sqrt{\frac{3+\sqrt{5}}{2}}\) thành a+b\(\sqrt{5}\) với a và b thuộc Q
rút gọn biểu thức
a) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
b) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Tính giá trị của biểu thức:
a) A=\(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)
b) B=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)