Đạo hàm của hàm số : y = \(\dfrac{sinx}{sinx-cosx}\) là
Giải các phương trình sau:
1. F'(x)=0 với y(x)=3x+60/x -64/x^3+5
2. F'(x)=0 với f(x)=1-sin(pi+x)+2cos((3pi+x)/2)
3. F'(x)=0 với f(x)=sin3x/3 +cosx -√3*(sinx+(cos3x/3))
4. G'(x)=0 với g(x)=sin3x -√3*cos3x +3*(cosx -√3*sinx)
giúp mình với ạ
đạo hàm của các hàm lượng giác
y=cos(3-5x)
y=cos(sinx)
y=1/cos2x
y=1/sinx
Tìm đạo hàm của các hàm số sau :
a) \(y=\dfrac{x-1}{5x-2}\)
b) \(y=\dfrac{2x+3}{7-3x}\)
c) \(y=\dfrac{x^2+2x+3}{3-4x}\)
d) \(y=\dfrac{x^2+7x+3}{x^2-3x}\)
Tìm đạo hàm của các hàm số sau :
a) \(y=5\sin x-3\cos x\)
b) \(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
c) \(y=x\cos x\)
d) \(y=\dfrac{\sin x}{x}+\dfrac{x}{\sin x}\)
e) \(y=\sqrt{1+2\tan x}\)
f) \(y=\sin\sqrt{1+x^2}\)
Bài tập 3: Cho hàm số
f( x )=c o s x. Chứng minh rằng:
2f'(x+pi/3).f'(x-pi/6)=f'(0)-f(2x+pi/6)
Bài tập 4: Cho hàm số y=3(sin^4 x +cos^4 )-2(sin^6 x +cos^6 x). Chứng minh rằng: y'=0 \-/ x€ Z
Bài tập 5: Cho hàm số
Y= (sin x/ 1+cos x)^3. CMR: y'.sinx-3y=0
Tìm đạo hàm của hàm số sau :
\(y=\tan\dfrac{x}{2}-\cot\dfrac{x}{2}\)
Giải các bất phương trình sau :
a) \(y'< 0\) với \(y=\dfrac{x^2+x+2}{x-1}\)
b) \(y'\ge0\) với \(y=\dfrac{x^2+3}{x+1}\)
c) \(y'>0\) với \(y=\dfrac{2x-1}{x^2+x+4}\)
Tìm đạo hàm của các hàm số sau :
a) \(y=\left(9-2x\right)\left(2x^3-9x^2+1\right)\)
b) \(y=\left(6\sqrt{x}-\dfrac{1}{x^2}\right)\left(7x-3\right)\)
c) \(y=\left(x-2\right)\sqrt{x^2+1}\)
d) \(y=\tan^2x-\cot x^2\)
e) \(y=\cos\dfrac{x}{1+x}\)