Lời giải:
$y'=x^2-(m-1)x-m=(x+1)(x-m)$
$y''=2x-(m-1)$
Nếu $x_{ct}=-1$ thì $y''(-1)=-1-m>0\Leftrightarrow m< -1$
$y_{ct}=\frac{1}{2}m+\frac{1}{2}=\frac{1}{3}$
$\Leftrightarrow m=\frac{-1}{3}$ (loại vì $m< -1$)
Nếu $x_{ct}=m$ thì $y''(m)=m+1>0\Leftrightarrow m>-1$
$y_{ct}=\frac{-1}{6}m^3+\frac{1}{2}m^2+\frac{1}{3}=\frac{1}{3}$
$\Leftrightarrow m=0$ (chọn) hoặc $m=-3$ (loại)
Vậy $m=0$