ĐKXĐ: ...
Đặt \(x+\sqrt{17-x^2}=t\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
Pt trở thành:
\(t+\frac{t^2-17}{2}=9\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{17-x^2}=5\\x+\sqrt{17-x^2}=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{17-x^2}=5-x\left(x\le5\right)\\\sqrt{17-x^2}=-7-x\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow17-x^2=\left(5-x\right)^2\)
\(\Leftrightarrow2x^2-10x+8\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)