Lời giải:
ĐK: \(x\in (0;+\infty)\)
\(x^{\log_29}=x^2.3^{\log_2x}-x^{\log_23}\)
\(\Leftrightarrow x^{2\log_23}=x^2.x^{\log_23}-x^{\log_23}=x^{\log_23+2}-x^{\log_23}\)
\(\Leftrightarrow x^{\log_23}(x^{\log_23}-x^2+1)=0\). Do $x\neq 0$ nên:
\(x^2-x^{\log_23}=1(*)\)
Nếu \(0< x\leq 1\Rightarrow x^2\leq 1; x^{\log_23}>0\Rightarrow x^2-x^{\log_23}< 1\) (vô lý). Do đó \(x\in (1;+\infty)\)
Đặt \(f(x)=x^2-x^{\log_23}\Rightarrow f'(x)=2x-\log_23x^{\log_23-1}\)
\(=x^{\log_23-1}(2x^{2-\log_23}-\log_23)>x^{\log_23-1}(2.1-\log_23)>0\)với mọi $x\in (1;+\infty)$ nên $f(x)$ đồng biến với mọi $x\in (1;+infty)$. Mà ở vế phải thì $1$ là hàm hằng. Do đó $(*)$ chỉ có nghiệm duy nhất.
Dễ thấy $x=2$ là nghiệm duy nhất của pt