Xét tính chẵn, lẻ của các hàm số sau:
a/ y=\(\frac{sinx+1}{cosx}\)
b/y=\(tan^2x\)
c/y=\(|cotx|\)
d/y=\(sin(\frac{\pi}{2}-x)\)
Tìm txđ của hàm số sau:
1, \(y=sin\sqrt{\dfrac{1+x}{1-x}}\)
2,\(y=\sqrt{\dfrac{sinx+2}{cosx+1}}\)
3,\(y=\dfrac{2}{cosx-cos3x}\)
Xét tính chẵn, lẻ của các hàm số sau:
a/ y =\(sinx+cosx\)
b/ y =\(-cosx\)
c/ y =\(sinx.cos3x\)
d/ y =\(cot4x\)
Xét tính chẵn, lẻ của các hàm số sau:
a/ y =\(|sinx|\)
b/ y =\(x^2sinx\)
c/ y =\(\frac{x}{cosx}\)
d/ y =\(x+sinx\)
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
Tìm tập xác định của hàm số :
1.y=\(\frac{1}{sinx-cosx}\)
2.y=\(\frac{3}{sin^2x-cos^2x}\)
3.y=\(\frac{cotx}{cosx-1}\)
3.y=\(\frac{1-sinx}{sinx+1}\)
4.y=\(\frac{1-2cosx}{sin3x-sinx}\)
5.y=\(tanx+cotx\)
6.y=\(\frac{2x}{1-sin^2x}\)
7.y=\(tan\left(3x-1\right)\)
8.y=\(sin\left(x-1\right)\)
9.y=\(\sqrt{\frac{1-sinx}{1+cosx}}\)
10.y=\(\sqrt{sinx+2}\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
tìm tập xác định
a)y=tan(pi/2 nhân cosx) b) y= cosx+1/cosx c) y=tan2xcot8x d)y=căn bậc hai của (2cosx-căn bậc hai của 3) e) y=(2+3sin2x)/cos2x-1 f)y=3sin3x/căn bậc hai (1-cosx) g)y=căn bậc hai của (2+3tan^22x) h) y=1/ căn bậc hai ( 1+sin^3x) k)y=sinx/ tan^2x/2
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
y=sinx - cosx -sin2x + 1
y=2( sinx + cosx )+4 sinx.cosx - 2