Gọi I là giao điểm MB, CN thì I là trọng tâm tam giác
\(sin\widehat{ACN}=\dfrac{AB}{2CN}=\dfrac{AB}{\sqrt{4AC^2+AB^2}}\) ; \(BM=\sqrt{\dfrac{AC^2}{4}+AB^2}\Rightarrow IM=\dfrac{1}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}\)
Ta có: \(\dfrac{sin\widehat{CIM}}{CM}=\dfrac{sin\widehat{ACN}}{IM}\Leftrightarrow sin\alpha=\dfrac{CM}{IM}sin\widehat{ACN}=\dfrac{AC}{\dfrac{2}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}}.\dfrac{AB}{\sqrt{4AC^2+AB^2}}\)
\(\Leftrightarrow sin\alpha=\dfrac{3AB.AC}{\sqrt{\left(4AB^2+AC^2\right)\left(4AC^2+AB^2\right)}}\le\dfrac{3AB.AC}{5AB.AC}=\dfrac{3}{5}\)