Cho x+y+z=0 và x,y,z khác 0. Rút gọn:
a) A= \(\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b) B= \(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}\)
Giải các phương trình:
a) \(\left|x^2+1\right|=\left|x^3-5x^2-2x+4\right|\)
b) \(\left|\frac{2x+1}{x-5}\right|=x+5\)
c) \(\left|x^2-1\right|+\left|x\right|=1\)
d) \(\frac{3}{\left|x+3\right|-1}=\left|x+2\right|\)
e) \(\left|x+1\right|+\left|x-1\right|=1+\left|1-x^2\right|\)
g) \(\left|3-2x\right|-\left|x\right|=5\left(\left|2+3x\right|+x-2\right)\)
\(\begin{cases}2y\left(y^4+10y^2+5\right)=x^5+\left(x+2\right)^5\\\sqrt{4x+1}-\sqrt{2\left(y+1\right)}=\frac{12y-30}{x^2+18}\end{cases}\)
Cho phương trình \(\frac{\left(x-2\right)\left(\left(m^2-1\right)x+1\right)}{x-1}\)=0.Có tất cả bao nhiêu giá trị thực của m để phương trình có đúng một nghiệm
CHUYÊN ĐỀ GIẢI PHƯƠNG TRÌNH
a, \(\sqrt{2x-1}+\sqrt{x^2+3}=4-x\) f, \(2x^2-11x+23=4\sqrt{x+1}\)
b, \(\sqrt{x^2+x+1}=\sqrt{x^2-3x-1}+2x+1\) g, \(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
c, \(\left|x-16\right|^4+\left|x-17\right|^3=1\) h, \(9\left(\sqrt{4x+1}-\sqrt{3x-2}\right)=x+3\)
d, \(\left(x+1\right)\sqrt{x+2}+\left(x+6\right)\sqrt{x+7}=x^2+7x+12\)
e, \(\left(4x^3-x+3\right)^3-x^3=\frac{3}{2}\)
Giải pt
A,x2 + \(\frac{8+x^2}{\left(9+x\right)^2}\)= 40 b, \(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)
help me
#mã mã#
Cho hệ
\(\left\{{}\begin{matrix}mx+y=2\\x+y=m\end{matrix}\right.\)
Tìm GTNN của \(\left|mx+y-2\right|+\left|x+y-m\right|\)
cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
Cho a,b,c>0 Chứng minh \(\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}\ge\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\)