Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Xét các số thực a, b thỏa mãn \(\dfrac{1}{4}< b< a< 1\). Biểu thức \(P=\log_a\left(b-\dfrac{1}{4}\right)-\log_{\dfrac{a}{b}}\sqrt{b}\) đạt giá trị nhỏ nhất khi ?

nguyen thi vang
4 tháng 1 2021 lúc 22:44

Ta có: 

\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)

Mà : 

a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)

P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)

Đặt t=logab

Do b<a<1 => t=logab >1

Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc

P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
AllesKlar
Xem chi tiết
AllesKlar
Xem chi tiết
Nguyễn Trinh
Xem chi tiết
yourbestfriend 331975
Xem chi tiết
Phạm Trần Phát
Xem chi tiết