Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)
So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)
\(\Leftrightarrow m=3\)
Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)
So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)
\(\Leftrightarrow m=3\)
Giải hệ pt :
a) \(\left\{{}\begin{matrix}12x+16y+1=0\\3x+4y+2=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5x-1}{5y-2}=\dfrac{1}{2}\\5 \left(x+3\right)-7\left(y+1\right)=-1\end{matrix}\right.\)
mọi người giải gúp mình với. Cần cực gấp \(a,\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.b,\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.c,\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.d,\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.e,\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.f,\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.g,\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.h,\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)
Xác định m để hệ pt \(\left\{{}\begin{matrix}x+y=m+2\\3x+5y=2m\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn điều kiện \(\left|x+y\right|=1\)
Giải hệ pt:
\(\left\{{}\begin{matrix}\dfrac{3x}{2}+y=0\\x-y=-1\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2+y^2=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\dfrac{1}{3x+2y}+\dfrac{1}{3y+2z}+\dfrac{1}{3z+2x}=\dfrac{1}{x+2y+3z}+\dfrac{1}{y+2x+3x}+\dfrac{1}{z+2x+3y}\end{matrix}\right.\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y-2}=-1\\\frac{4}{x}+\frac{3}{y-2}=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{matrix}\right.\)
Giai he pt: \(\left\{{}\begin{matrix}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\end{matrix}\right.\)