Xác định công thức hàm số:
a/ f(x)+3f\(\left(\frac{1}{3}\right)\)=\(x^2\)
b/ f(x)+2f\(\left(\frac{1}{x}\right)=2x+\frac{1}{x}\)
c/ f(x)+3f(-x)=x+1
Mọi người giúp mình nha????
Bài 1:thu gọn đa thức
a,\(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
b,\(-54y^2\cdot bx\) với b là hằng số
c,\(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
Bài 2:cho 2 đa thức:
\(f\left(x\right)=x^5-3x^2+7x^4-9x^3-\frac{1}{4}\)
\(g\left(x\right)=5x^4-x^5+x^2+3x^2-\frac{1}{4}\)
a,Hãy thu gọn và sắp xếp hai đa thức trên
b,Tính \(f\left(x\right)+g\left(x\right)\) và \(f\left(x\right)-g\left(x\right)\)
Bài 3:Cho \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
a,Thu gọn f(x)
b,Tính f(1) và f(-1)
Cho hàm số \(y=f\left(x\right)=\frac{4^x}{4^x+2}\).Tính:
\(P=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+....+f\left(\frac{2016}{2017}\right)\)
cho hàm số \(f\left(x\right)\)xác định mọi giá trị x. Biết rằng với mọi giá trị của x ta đều có \(f\left(x\right)+3.f\left(\frac{1}{x}\right)=x^2\). Tính giá trị của \(f\left(2\right)\).
Tìm x \(\in\) Z
a,\(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
b, \(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{3}\right)\)
c, \(x:\left(\frac{1}{2}\right)^2=\frac{-1}{2}\)
d,\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\)
e,\(\frac{3^2.3^8}{27^3}=3^x\)
f,\(2^{x-1}=\left(16\right)^5\)
\(a,\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(b,\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(c,\left(-3\right)^{x+5}=\frac{1}{81}\)
\(d,\left(\frac{1}{9}^x\right)=\left(\frac{1}{27}\right)^6\)
\(e,\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(f,5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(r,4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(h,\left(\frac{1}{2}-\frac{1}{3}\right).6x+6^{x+2}=6^{10}+6^7\)
nhờ mấy bn giúp mk tối mình nộp rồi
Cho hàm số f(x) xác định với mọi x thuộc Z. Biết rằng với mọi x khác 0 ta đều có \(f\left(x\right)+2f\left(\dfrac{1}{x}\right)=x^2\). Tính f(2)
cho hàm số f(x) xác định với mọi x thuộc R. Biết rằng với mọi x ta đều có :
f(x) + 3f( \(\frac{1}{x}\) )=x2.Tính f(2)
Tìm x thuộc Q biết:
a) |x| + |1 - x| = x + |x - 3|
b) |x - 3| + |x + 5| = 8
c) |x + 1| + |x + 2| + |x +3| + |x +4| = 5x - 1
d)\(\left|x^2\right|x+\frac{1}{4}\left|\right|\) = \(x^2\)
e) 2015 . \(\left|2x-y\right|^{2016}+2016.\left|y-4\right|^{2015}\) lớn hơn hoặc bằng 0
f) 3 . |4x| + |y + 3| = 21 (x,y thuộc Z)
g) \(2y^2=3-\left|x+4\right|\)
h) |x + 2| + |x - 1| = 3 - \(\left(y+2\right)^2\)
i) |2x + 3| + |2x - 1| = \(\frac{8}{3\left(y-5\right)^2+2}\)
k) | x + y + 5| + 5 = \(\frac{30}{3.\left|y+5\right|+6}\)