\(\left(\alpha\right)\) // \(\left(\beta\right)\) \(\Rightarrow\dfrac{A}{2}=-\dfrac{1}{B}=\dfrac{3}{6}\ne\dfrac{2}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}A=1\\B=-2\end{matrix}\right.\)
\(\left(\alpha\right)\) // \(\left(\beta\right)\) \(\Rightarrow\dfrac{A}{2}=-\dfrac{1}{B}=\dfrac{3}{6}\ne\dfrac{2}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}A=1\\B=-2\end{matrix}\right.\)
Trong không gian Oxyz, hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(2;-1;2\right)\) và song song với mặt phẳng \(\left(\beta\right):2x-y+3z+4=0\) ?
Xác định các giá trị của m và n để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau :
a) \(2x+my+3z-5=0\) và \(nx-8y-6z+2=0\)
b) \(3x-5y+mx-3=0\) và \(2x+ny-3z+1=0\)
Viết phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(2;-1;2\right)\), song song với trục Oy và vuông góc với mặt phẳng \(\left(\alpha\right):2x-y+3z+4=0\)
Hãy viết phương trình mặt phẳng \(\left(\alpha\right)\) đi qua gốc tọa độ \(O\left(0;0;0\right)\) và song song với mặt phẳng \(\left(\beta\right):x+y+2z-7=0\) ?
Trong không gian Oxyz, lập phương trình mặt phẳng \(\left(\alpha\right)\) đi qua hai điểm \(A\left(1;0;1\right);B\left(5;2;3\right)\) và vuông góc với mặt phẳng \(\left(\beta\right):2x-y+z-7=0\) ?
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây :
a) \(\left(\alpha_1\right):3x-2y-3z+5=0;\left(\alpha'_1\right):9x-6y-9z-5=0\)
b) \(\left(\alpha_2\right):x-2y+z+3=0;\left(\alpha'_2\right):x-2y-z+3=0\)
c) \(\left(\alpha_3\right):x-y+2z-4=0;\left(\alpha'_3\right):10x-10y+20z-40=0\)
Lập phương trình của mặt phẳng \(\left(\alpha\right)\) đi qua điểm \(M\left(3;-1;-5\right)\) đồng thời vuông góc với hai mặt phẳng :
\(\left(\beta\right):3x-2y+2z+7=0\)
\(\left(\gamma\right):5x-4y+3z+1=0\)
Lập phương trình mặt phẳng \(\left(\alpha\right)\) đi qua hai điểm \(A\left(0;1;0\right);B\left(2;3;1\right)\) và vuông góc với mặt phẳng \(\left(\beta\right):x+2y-z=0\) ?
Tìm tập hợp các điểm cách đều hai mặt phẳng :
\(\left(\alpha\right):3x-y+4z+2=0\)
\(\left(\beta\right):3x-y+4z+8=0\)