CM:
\(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{6}}{6}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}+\sqrt{y}}=x-y\) với x.0, y>0, x≠y
\(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{x}}{y-\sqrt{xy}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)với x>0, y>0, x≠y
Phân tích đa thức thành nhân tử (với các căn thức đã cho đều có nghĩa)
A = \(x-y-3\left(\sqrt{x}+\sqrt{y}\right)\)
B = \(x-4\sqrt{x}+4\)
C = \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
D = \(5x^2-7x\sqrt{y}+2y\)
Chứng minh : A < 0 với y > x > 0
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\dfrac{2\sqrt{xy}}{x-y}\)
\(\dfrac{\sqrt{y}}{x-\sqrt{ }xy}+\dfrac{\sqrt{x}}{y-\sqrt{ }xy}=-\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
Chứng minh đẳng thức với x ; y lớn hơn 0 ; x khác y
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}-\sqrt{y}}=x-y\) với >0,y>0,x khác y
khử mẫu của biểu thức dưới dấu căn bậc hai
a)\(6\sqrt{\dfrac{x}{2y}}\) với \(x< 0,y< 0\)
b)\(\dfrac{4xy^2}{3}\sqrt{\dfrac{9}{xy}}\) với \(x>0,y>0\)
Tính P = x2 + y2 và Q = x2009 + y2009
Biết rằng x>0, y>0, 1 + x + y = \(\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
Khai triển và rút gọn biểu thức (với x và y > 0):
a)\(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
b)\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
c)\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
Chứng minh :
a) \(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\) với \(x>0;y>0\)
b) \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}=x+\sqrt{x}+1\) với \(x\ge0;x\ne1\)
tính
\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{1}{1+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\)
\(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\) với x>=0
\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)