ĐKXĐ: ...
Đặt \(\sqrt{x+7}=t\ge0\Rightarrow7=t^2-x\)
Pt trở thành:
\(x^2+t=t^2-x\Leftrightarrow x^2-t^2+x+t=0\)
\(\Leftrightarrow\left(x-t\right)\left(x+t\right)+x+t=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-x\\t=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+t}=-x\left(x\le0\right)\\\sqrt{x+7}=x+1\left(x\ge-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+7=x^2\\x+7=x^2+2x+1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{29}}{2}\\x=2\end{matrix}\right.\)