a) x2-3x-x+3>0
<=> x(x-3)-(x-3)>0
<=> (x-3)(x-1)>0
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x< 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\)
b) x3-2x2+3x-2\(\ge\) 0
<=> x3-x2-x2+x+2x-2\(\ge0\)
<=> (x-1)(x2-x+2)\(\ge0\)
Vì x2-x+2\(\ge0\)
nên x-1\(\ge0\)
x>=1