BĐT Cauchy-Schwarz:
\(\left(1+1+1+...+1\right)\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\left(\text{2017 số 1}\right)\)
\(\Leftrightarrow2017\left(x^2_1+x^2_2+...+x^2_{2017}\right)\ge\left(x_1+x_2+...+x_{2017}\right)^2\)
\(\Leftrightarrow x^2_1+x^2_2+...+x^2_{2017}\ge\dfrac{\left(x_1+x_2+...+x_{2017}\right)^2}{2017}\)
Khi \(\dfrac{x_1}{1}=\dfrac{x_2}{1}=...=\dfrac{x_{2017}}{1}\Leftrightarrow x_1=x_2=...=x_{2017}\)
Bạn j j biết làm bài ơi, giải hộ với. Bạn chưa biết làm thì nghĩ hộ t với. Làm được tớ cho mấy cái kẹo mút này...
Ú hú hú. mai 2h là t die r, giúp cái đi!!! Meo~!
Chứng minh lại bđt AM-GM đó mà, cái này lên mạng có