Giải:
Thay \(x-y=9\) vào biểu thức ta được:
\(A=\dfrac{4x-\left(x-y\right)}{3x+y}-\dfrac{4y+\left(x-y\right)}{3y+x}\)
\(=\dfrac{4x-x+y}{3x+y}-\dfrac{4y+x-y}{3y+x}\)
\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}=1-1=0\)
Vậy \(A=0\)
Từ x - y = 9 \(\Rightarrow\) x=9+y.
Thay x=9+y vào A ta có:
A=\(\dfrac{4x-9}{3x+y}\)-\(\dfrac{4y+9}{3y+x}\)
=\(\dfrac{4.\left(9+y\right)-9}{3\left(9+y\right)+y}\)-\(\dfrac{4y+9}{3y+y+9}\)
=\(\dfrac{36+4y-9}{27+3y+y}\)-\(\dfrac{4y+9}{4y+9}\)
=\(\dfrac{27+4y}{27+4y}\)-1=1-1=0