\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}-\dfrac{5x-2}{4-x^2}\)
\(=\dfrac{x^2-3x+2-x^2-2x+5x-2}{\left(x-2\right)\left(x+2\right)}\)
=0
\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}-\dfrac{5x-2}{4-x^2}\)
\(=\dfrac{x^2-3x+2-x^2-2x+5x-2}{\left(x-2\right)\left(x+2\right)}\)
=0
Giải phương trình x+3/x^2-4 - x+1/x^2-5x+4 = 2x+4/x^2-5x+4
Tìm x, biết:
(4x-1)2-(3x+2)(3x-2)= (7x-1)(x+2)+(2x+1)2-(4x2+7)
(5x-1)(x+1)-2(x-3)2= (x+2)(3x-1)-(x+4)2+(x2-x)
(-x+5)(x-2)+(x-7)(x+7)= (3x+1)2-(3x-2)(3x+2)
(2x+3)2-(5x-4)(5x+4)= (x+5)2-(3x-1)(7x+2)-(x2-1)
(1-3x)2-(x-2)(9x+1)= (3x-4)(3x+4)-9(x+3)2
1. Tìm x
a. (5x-7)(x-9)-(-x+3)(-5x+2)= 2x(x-4)-(x-1)(2x+3)
b. (x-3)(-x+10)+(x-8)(x+3)= (5x^2-1)(x+3)-5x^3-15x^2
tìm x biết
a) (5x-1)2-(5x-4)(5x+4)+7
b)5x2+4xy+4y2+4x+1=0
c)(x+2)3-x(x-1)(x+1)=6x2+21
Giải phương trình:
1. (x - 5)2 + (x + 3)2 = 2(x - 4)(x + 4) - 5x + 7
2. (x + 3)(x - 2) - 2(x + 1)2 = (x - 3)2 - 2x2 + 4x
3. (x + 1)3 - (x + 2)(x - 4) = (x - 2)(x2 + 2x + 4) + 2x2
4. (x - 2)3 + (x - 5)(x + 5) = x(x2 - 5x) - 7x + 3
5. (x + 4)(x2 - 4x + 16) - x(x - 4)2 = 8(x - 3)(x + 3)
tìm x biết:
1) x2 - 10x = -25
2) 5x (x-1) = x-1
3) 2 (x+5) - x2 - 5x = 0
4) x2 - 2x -3 = 0
5) 2x2 + 5x - 3 = 0
: Giải các phương trình sau:
a)x4 + 5x3 – 12x2 + 5x + 1 = 0
b)(x2 – x + 1)4 + 5x4 = 6x2 ( x2 – x + 1)2
c)( 8x + 7)2( 4x + 3)( x + 1) = 3,5
d)( x2 + 4x+ 2)2 = ( x + 3)4
a) -3x(x+2)²+(x+3)(x-1)(x+1)-(2x-5)²
b) 2(x-3)(x+3)(x+2)-(x-1)(x²-3)-5x(x+4)²-(x-5)²
c) 2x (x - 4)²(x + 5)(x - 2)(x + 2)+2(x + 5)² - (x - 1)²
d) (x + 5)² - 4 x (2 x + 3)²(2 x - 1)(x + 3)(x- 3)
e) -2 x( 3 x + 2)(3 x -2)+ 5( x + 2)²- (x -1) (2 x - 1)(2x +1)
f) (7 x - 8)(7 x + 8) - 10(2x + 3)² + 5 x (3x - 2)² - 4 (x - 5)².
g) (x²- 3)(x² + 3)- 5x²(x + 1) -(x² - 3x) (x² - 2x) + 4x(x + 2)².
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)