X-1009/1001+x-4/1003+x+2010/1005=7
Giải phương trình:
x-1001/1006 + x-1003/1004 + x-1005/1002 + x-1007/1000 = 4
giải hương trình:\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}\)=4
\(\frac{x-1003}{1007}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
giải pt sau: \(\frac{x-1009}{1010}+\frac{x-1007}{1012}=\frac{x-1010}{1009}+\frac{x-1012}{1007}\)
giải pt sau: \(\frac{x-1009}{1010}+\frac{x-1007}{1012}=\frac{x-1010}{1009}+\frac{x-1012}{1007}\)
Cho a,b,x,y thỏa mãn \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) và x2+y2=1. cmr \(\dfrac{x^{2006}}{a^{1003}}+\dfrac{x^{2006}}{a^{1003}}=\dfrac{2}{\left(a+b\right)^{1003}}\)
a, Tìm GTNH của : B = x\(^4\)- x\(^2\)+ 2x + 7
b, Giải phương trình : \(\frac{x+6}{1005}+\frac{x+132}{471}+\frac{x+1008}{168}=-12\)
Chứng minh các hằng đẳng thức sau :
a, \(\left(a^2-b^2\right)+\left(2ab\right)^2=\left(a^2+b^2\right)^2\)
b, \(\left(a^2+b^2\right).\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
c, \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2=\left(a^2+b^2+c^2\right).\left(x^2+1\right)\)
d, \(\dfrac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=a^3+b^3+c^3-3abc\)
e, \(1000^2+1003^2+1005^2+1006^2=1001^2+1002^2+1004^2+1007^2\)