cho hs \(y=(m^2-4m+5)x^2\)
1 . chứng tỏ x>0 hs đồng biến, x<0 hs nghịch biến
2. khi m= 1 tìm x khi y=4, y=8, y=-8
tìm các gt của m khi x=1 y=3
Cho hàm số y = (4m + 2) x2 với m ≠ -\(\dfrac{1}{2}\). Tìm các giá trị của tham số m để hàm số :
a) Nghịch biến với mọi x < 0
b) Đạt giá trị lớn nhất là 0
Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2
a) Xác định giá trị của m để hàm số đồng biến, nghịch biến
b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.
Giúp mk nha
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
Bài 1 : Cho hàm số y = (3 – m)x 2
a) Tìm điều kiện của m để hàm số trên được xác định.
b) Xác định m để hàm số đồng biến với mọi x < 0.
c) Xác định m để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0.
tìm m để các cặp phương trình sau tương đương
\(\left\{{}\begin{matrix}x^2-4x+5=0\\x^2+2x+3m=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+2x-3=0\\x^2-mx+2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-2x+m=0\\x^2-2x-3m=0\end{matrix}\right.\) giúp e với m người
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
Cho hàm số y = f(x) = -1,5x2
a. Hãy tính f(1), f(2), f(3) rồi sắp xếp các giá trị này theo thứ tự từ lớn đến bé.
b. Hãy tính f(-3), f(-2), f(-1) rồi sắp xếp các giá trị này theo thứ tự từ bé đến lớn.
c. Phát biểu nhận xét của em về sự đồng biến hay nghịch biến của hàm số này khi x > 0 ; khi x < 0
cho phương trình \(x^2-6\left(m-1\right)x+9\left(m-3\right)=0\left(1\right)\)
a, giải phương trình (1) khi m=2
b, tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt thoả mãn \(x_1+x_2=2x_1.x_2\)