Cách 1:
\(P=\frac{3\sqrt{x}\left(\sqrt{x}+2\right)+27}{\sqrt{x}+2}=3\sqrt{x}+\frac{27}{\sqrt{x}+2}=3\left(\sqrt{x}+2\right)+\frac{27}{\sqrt{x}+2}-6\)
\(P\ge2\sqrt{\frac{3\left(\sqrt{x}+2\right).27}{\sqrt{x}+2}}-6=12\)
\(P_{min}=12\) khi \(\sqrt{x}+2=\frac{9}{\sqrt{x}+2}\Leftrightarrow x=1\)
Cách 2:
\(P=\frac{12\left(\sqrt{x}+2\right)+3x-6\sqrt{x}+3}{\sqrt{x}+2}=12+\frac{3\left(\sqrt{x}-1\right)^2}{\sqrt{x}+2}\ge12\)
\(P_{min}=12\) khi \(x=1\)