Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nhật Ái

Với x >0, tìm Min của biểu thức: \(M=4x^2-3x+\dfrac{1}{4x}+2011\)

Phương Trâm
14 tháng 8 2017 lúc 20:47

\(M=4x^2-3x+\dfrac{1}{4x}+2011\)

\(M=4x^2-4x+1+x+\dfrac{1}{4x}+2011\)

\(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

\(\left(2x-1\right)^2\ge0\)\(x>0\)

\(\Rightarrow\dfrac{1}{4x}>0\)

Lợi dụng BĐT Cauchy cho 2 số nguyên dương ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x\dfrac{1}{4x}}=2.\dfrac{1}{2}=1\)

\(\Rightarrow M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

\(\Rightarrow M\ge2011\)

Dấu " = " xảy ra khi:

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\x=\dfrac{1}{4x}\\x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x^2=\dfrac{1}{4}\\x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\\x>0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(M_{min}=2011\) đạt được khi \(x=\dfrac{1}{2}\)


Các câu hỏi tương tự
Đinh Cẩm Tú
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Bảo Kiên
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
응웬 티 하이
Xem chi tiết