chứng minh \(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\in Z\) với\(\forall n=2k\)
Chứng minh rằng:
1, n5-1⋮5 với mọi n là số nguyên
2, n3+3n2-n-3⋮48 với mọi n là số nguyên lẻ
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
chứng minh rằng : với n thuộc Z, n>1 thì
n^n - n^2 + n -1 chia hết cho (n-1)^2 ( không dùng mod )
1.chứng minh rằng
a, n(n^4-16)⋮15
b, n^3-28n⋮48 (n là số nguyên chẵn)
c, n^5 và n có chữ số tận cùng giống nhau(nϵN)
d, n^3+3n^2-n-3⋮48 với n là số lẻ
2. Cho n là số chẵn, chứng minh rằng:
n^3-4n và n^3+4n⋮16
chứng minh rằng \(n^4+7\left(7+2n^2\right)⋮64\) với mọi n là số nguyên lẻ
a, chứng minh đẳng thức
\(x^n-y^n=\left(x-y\right)\left(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1}\right)\)
b, cho F(x) là đa thức với các hệ số nguyện. giả sử F(2011) và F(2012) là các số nguyên lẻ. chứng minh đa thức F(x) không có nghiệm nguyên
A=(n+1)^5-(+1)^4-4*(n^2+n)^2+2*(n^3-n)
a,Tìm n để A bằng 0
b,chứng minh A chia hết cho 30 với mọi n thuộc Z
Chứng minh rằng (10n-9n-1): hết cho 27 với n thuộc N*