a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
cho a,b,c thỏa mãn 0 ≤ a,b,c ≤ 1. Cmr: \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)
Cho a,b,c là các số dương tùy ý. CMR \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
Cho a, b,c > 0 và \(a+b+c\le1\)
CMR : \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Cho: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) và a, b, c \(\ne\) 0
\(A=\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\)
CMR: 3abc = A
Cho a,b,c>0 thỏa mãn ab+bc+ac=3. Cmr:
\(P=\dfrac{1}{a^2+2}+\dfrac{1}{b^2+2}+\dfrac{1}{c^2+2}\le1\)
Cho ba số a,b,c khác 0 và không đồng thời bằng nhau ,thỏa mãn a^3 + b^3 +c^3 =3abc
tính giá trị cả biểu thức
P\(=\dfrac{1}{a^2+b^2-c^2}\)+\(\dfrac{1}{b^2+c^2-a^2}\)+\(\dfrac{1}{c^2+a^2-b^2}\)
Tím những giá trị nguyên của x để biể thức A =\(\dfrac{x+2}{2x^2-7}\)có giá trị nguyên
HELP ME
cho a, b, c > 0 và \(a^2+b^2+c^2=3\)
Cmr:
\(\frac{a}{\sqrt{a^2+b+c}}+\frac{b}{\sqrt{b^2+a+c}}+\frac{c}{\sqrt{c^2+a+b}}\le\sqrt{3}\)
Cho a,b,c > 0 thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). CMR:
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)