Hàm đồng biến khi \(\dfrac{m}{2}>0\Rightarrow m>0\)
Hàm đồng biến khi \(\dfrac{m}{2}>0\Rightarrow m>0\)
Cho hàm số y=(m+1)x+n với m khác 1
a) Với m=-√2 thì hàm số đồng biến hay nghịch biến
b) Với giá trị của m,n thì độ thị cắt Oy tại điểm có tung độ y=2 qua A(1;5)
7. Cho hàm số \(y=f\left(x\right)=3x\)
Cho x 2 giá trị bất kì x1, x2 sao cho x1 < x2
Hãy CM \(f\left(x_1\right)< f\left(x_2\right)\) rồi rút ra kết luận hàm số đã cho đồng biến trên R
Cho hàm số \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in\mathbb{R}\)
Chứng minh rằng hàm số đồng biến trên \(\mathbb{R}\)
a) Cho hàm số :
\(y=f\left(x\right)=\dfrac{2}{3}x\)
Tính :
\(f\left(-2\right);f\left(-1\right);f\left(0\right);f\left(\dfrac{1}{2}\right);f\left(1\right);f\left(2\right)\)
b) Cho hàm số :
\(y=g\left(x\right)=\dfrac{2}{3}x+3\)
Tính :
\(g\left(-2\right);g\left(-1\right);g\left(0\right);g\left(\dfrac{1}{2}\right);g\left(1\right);g\left(2\right)\)
c) Có nhận xét gì về giá trị của hai hàm số đã cho ở trên khi biến x lấy cùng một giá trị ?
Cho hàm số y=f(x)=2x-3. X lấy giá trị thực bất kì x1, x2 sao cho x1 < x2. Chứng tỏ f(x1) < f(x2). Kết luận về tính biến thiên của hàm số
Cho hàm số \(y=-\dfrac{1}{2}x+3\)
a) Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau :
\(x\) | -2,5 | -2 | -1,5 | -1 | -0,5 | 0 | 0,5 | 1 | 1,5 | 2 | 2,5 |
\(y=-\dfrac{1}{2}x+3\) |
b) Hàm số đã cho là hàm số đồng biến hay nghịch biến ? Vì sao ?
Cho hai hàm số \(y=2x\) và \(y=-2x\)
a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của hai hàm số đã cho
b) Trong hai hàm số đã cho, hàm số nào đồng biến ? Hàm số nào nghịch biến ? Vì sao ?
** giúp giúp mình với mọi người ơi . cảm ơn mọi người rất nhiều
1) tìm điều kiện xác định của hàm số sau:
a) y = \(\sqrt{-\chi}\)
b) y = \(\sqrt{1-\chi}+\sqrt{1+\chi}\)
c) y = \(\frac{1}{\sqrt{\chi+2}}\)
2) chứng minh hàm số y = f (X) = 2X đồng biến trên R 3) chứng minh hàm số y bằng f (X ) = - x nghịch biến trên R
Xét sự đồng biến và nghịch biến của các hàm số sau:
a)y=3x+\(\sqrt{2}\)
b)y=1-\(\sqrt{2}\)
c)y=3(x^3-1)