\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
Hãy tính diện tích hình vuông ABCD ( hình bên) theo hai cách để kết luận rằng
( a-b)2 = a2-2ab + b2
Với a,b kà hai số bất kì,hãy viết vào chỗ trống (...) để tính (a-b)2 theo 2 cách:
Cách 1 : vận dụng công thuqức tính bình phương của một tổng:
(a-b)2 = [a+(-b)]2
= a2 + 2.a.(-b) +b2
=.......................
Cách 2 : thực hiện phép nhân đa thức với đa thức :
(a-b).(a-b) = a.a + a.(-b)+.....+.....
=............................
Bài tập: Cho a,b,x,y là những số khác 0. Biết rằng ( a2 + b2 ).( x2 + y2 ) = ( ax + by )2. Hãy tìm hệ thức giữa bốn số a,b,x,y.
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Điền vào chỗ trống sau đây để có đẳng thức đúng a) .... - 16y^4 = ( x - .... )( x + .... ) b) ( x - .... )( x + .... ) = .... - 3
H·y viÕt c¸c biÓu thøc díi d¹ng tæng cña ba b×nh phong;
(a + b + c)2 + a2 + b2 + c2
mình ko biết tổng ba bình phong là gì
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
Bài 2: Điền vào chỗ trống :
a, (❏ + 8xy + y2) = (❏ + ❏)
b, (4x2- 2xy + ❏) = (❏ - ❏)
c, (x2 + x + ❏) = (❏ + ❏)
d, (9x2 - 6xy + ❏) = (❏ - ❏)