\(=\lim\limits_{x\rightarrow+\infty}\dfrac{a^2x^2-a^2x^2+2x}{ax+\sqrt{a^2x^2-2x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}}{\dfrac{ax}{x}+\sqrt{\dfrac{a^2x^2}{x^2}-\dfrac{2x}{x^2}}}=\dfrac{2}{a+a}=\dfrac{1}{a}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{a^2x^2-a^2x^2+2x}{ax+\sqrt{a^2x^2-2x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}}{\dfrac{ax}{x}+\sqrt{\dfrac{a^2x^2}{x^2}-\dfrac{2x}{x^2}}}=\dfrac{2}{a+a}=\dfrac{1}{a}\)
Biết rằng L = lim \(\dfrac{\sqrt{4x^2-2x+1}+2-x}{\sqrt{ax^2-3x}+bx}\)>0 là hữu hạn. (với a,b là tham số ) Khẳng đình nào đúng
a) lim \(\dfrac{x\sqrt{x^2+1}-2x+1}{^3\sqrt{2x^3-2}+1}\)
x-> -∞
b) lim \(\dfrac{\left(2x+1\right)^3\left(x+2\right)^4}{\left(3-2x\right)^7}\)
x-> -∞
c) lim \(\dfrac{\sqrt{4x^2+x}+^3\sqrt{8x^3+x-1}}{^4\sqrt{x^4+3}}\)
x-> +∞
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
Tìm các giới hạn sau :
A=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
B=\(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}\)
C=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}\)
D=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
E=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)
Giup mình vớiii
a) lim (2x+ \(\sqrt{4x^2-x+1}\))
x-> -∞
b) lim x\(\left(\sqrt{4x^2+1}-x\right)\)
x-> -∞
a) lim ( x2+x-1)
x-> -∞
b) lim ( \(\sqrt{x^2+x+1}-2\sqrt{x^2-x}+x\))
x-> +∞
c) lim x\(\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\)
x-> +∞
a) lim ( \(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}\)
x-> +∞
b) lim \(\dfrac{\sqrt{4x+1}-3}{x^2-4}\)
x-> 2
c) lim \(\dfrac{\sqrt{2x+5}-1}{x^2-4}\)
x-> -2
biết \(\lim\limits_{x\rightarrow+\infty}\left(x+1\right)\sqrt{\dfrac{2x+1}{5x^3+x+2}}=-\sqrt{\dfrac{a}{b}}\) . tìm a, b biết a, b là phan so toi gian; a,b>0
a) lim \(\dfrac{3x^4-2x^5}{5x^4+x+4}\)
x-> -∞
b) lim \(\dfrac{x-1}{\sqrt{x^2-1}}\)
x-> +∞