\(y'\left(1\right)=-\dfrac{1}{1^2}=-1\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm N(1;1) là:
\(y=-1\left(x-1\right)+1=-x+2\)
\(y'\left(1\right)=-\dfrac{1}{1^2}=-1\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm N(1;1) là:
\(y=-1\left(x-1\right)+1=-x+2\)
Đề bài
Cho hàm số \(y = - 2{x^2} + x\) có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; - 6)
Cho hàm số y = f(x) có đồ thị (C), một điểm \({M_0}\) cố định thuộc (C) có hoành độ \({x_0}\). Với mỗi điểm M thuộc (C) khác \({M_0}\), kí hiệu \({x_M}\) là hoành độ của điểm M và \({k_M}\) là hệ số góc của cát tuyến \({M_0}M\). Giả sử tồn tại giới hạn hữu hạn \({k_0} = \mathop {\lim }\limits_{{x_M} \to {x_0}} {k_M}\). Khi đó, ta coi đường thẳng \({M_0}T\) đi qua \({M_0}\) và có hệ số góc là \({k_0}\) là ví trị giới hạn của cát tuyến \({M_0}M\) khi điểm M di chuyển dọc theo (C) dần tới \({M_0}\) . Đường thẳng \({M_0}T\)được gọi là tiếp tuyến của (C) tại điểm \({M_0}\), còn \({M_0}\) được gọi là tiếp điểm (Hình 3).
a) Xác định hệ số góc \({k_0}\) của tiếp tuyến \({M_0}T\) theo \({x_0}\)
b) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\)
Đề bài
Tính đạo hàm của hàm số \(f(x) = 3{x^3} - 1\) tại điểm \({x_0} = 1\) bằng định nghĩa
Tính đạo hàm của hàm số \(f\left( x \right) = {x^3}\) tại điểm x bất kì bằng định nghĩa
Đề bài
Chứng minh rằng hàm số \(f(x) = \left| x \right|\) không có đạo hàm tại điểm \({x_0} = 0\), nhưng có đạo hàm tại mọi điểm \(x \ne 0\)
Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là \(C(Q) = {Q^2} + 80Q + 3500\)
a) Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C’(Q). Tìm hàm chi phí biên.
b) Tìm C’(90) và giải thích ý nghĩa kết quả tìm được
c) Hãy tính chi phí sản xuất máy vô tuyến thứ 100
Tính đạo hàm của hàm số \(f\left( x \right) = 2x\)tại \({x_0} = 3\) bằng định nghĩa
Tính vận tốc tức thời của viên bi tại thời điểm \({x_0} = 1s\) trong bài toán tìm vận tốc tức thời