§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Viết phương trình đường thẳng đi qua điểm \(M\left(2;5\right)\) và cách đều hai điểm \(A\left(-1;2\right)\) và \(B\left(5;4\right)\) ?

ngonhuminh
10 tháng 4 2017 lúc 13:15

pt đường thẳng (AB)d: (x+1)-3(y-2)=x-3y+7=0

đường thẳng (d1) qua M// AB => d1//d

đảm bảo yêu cầu đầu bài

d1: (x-2)-3(x-5)=x-3y+13=0

Bùi Thị Vân
5 tháng 6 2017 lúc 17:04

Có hai trường hợp:
Th1. d đi qua \(M\left(2;5\right)\) và song song với đường thẳng AB.
Một vtcp\(\overrightarrow{v_d}=\overrightarrow{AB}\left(6;2\right)=2\left(3;1\right)\).
Phương trình đường thẳng d là: \(3\left(x-2\right)+1\left(y-5\right)=0\)\(\Leftrightarrow3x+y-11=0\).
Th2. d đi qua \(M\left(2;5\right)\) và trung điểm của AB.
Gọi I là trung điểm của AB.
\(x_I=\dfrac{-1+5}{2}=2;y_I=\dfrac{4+2}{2}=3\).
Vậy \(I\left(2;3\right)\).
Một véc tơ chỉ phương của d là: \(\overrightarrow{MI}=\left(0;-2\right)\).
Phương trình đường thẳng d là: \(0\left(x-2\right)-2\left(y-5\right)=0\)\(\Leftrightarrow y=5\).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết