Theo công thức lượng giác thì \(\sin 2x=2\sin x\cos x\Rightarrow 2\sin ^2x\cos^2x=\frac{1}{2}\sin ^22x\)
Do đó ta có công thức như trên.
Theo công thức lượng giác thì \(\sin 2x=2\sin x\cos x\Rightarrow 2\sin ^2x\cos^2x=\frac{1}{2}\sin ^22x\)
Do đó ta có công thức như trên.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
Tìm min, max của :
1. y = \(\sqrt{4-sin^52x}-8\)
2. y = \(\dfrac{4}{\sqrt{5-2cos^2x.sin^2x}}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất:
a) \(y=3-\dfrac{4}{3+2sinx}\)
b) \(y=\dfrac{2}{5-4cosx}\)
c) \(y=2cos^2x-1\)
d) \(y=3-4sin^22x\)
e) \(y=\sqrt{3-2sinx}\)
f) \(y=\dfrac{5}{\sqrt{5-4sinx}}\)
g) \(y=\dfrac{4}{4-\sqrt{5+4cosx}}\)
h) \(y=sinx-cosx-2\)
i) \(y=\sqrt{3}cosx-sinx+3\)
j) \(y=4cos^2x-4cosx+5\)
giải pt
a, \(\sin^2x+\sin^22x+\sin^23x=\dfrac{3}{2}\)
b. \(\cos^2x+\sin^22x+\cos^23x=1\)
c,\(\sin5x+2\cos^2x=1\)
d,\(1+\tan x=2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\)
e,\(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
a)sin^4\(\frac{x}{3}\) +cos^4\(\frac{x}{3}\)=\(\frac{5}{8}\)
b)4(sin^4x+cos^4x)+\(\sqrt{3}\)sin4x=2
c)cos^4x+sin^6x=cos2x
d)cos^6x+sin^6x=cos4x
2cos^2x+2cos^2x+4cos^3(2x)-3cos2x=5
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
1) sin2x + 2cosx = 0
2) sin(2x -10*) = \(\dfrac{1}{2}\) (-120* <x< 90*)
3) cos(2x+10*)= \(\dfrac{\sqrt{2}}{2}\)(-180*<x<180*)
4) \(\sin^2\left(5x+\dfrac{2\pi}{5}\right)-\cos^2\)(\(\dfrac{x}{4}-\pi\)) =0
Giải PT
a) \(\left|\sin x-\cos x\right|+\left|\sin x+\cos x\right|=2\)
b) \(\tan x-3\cot x=4\left(\sin x+\sqrt{3}\cos x\right)\)
c) \(2\sin^2x-2\sqrt{2}\sin x+3\tan^22x-2\sqrt{3}\tan2x+2=0\)
cos2 2x-\(\sqrt{3}sin4x=1+sin^22x\)