\(\overrightarrow{AB}=\overrightarrow{CD}\)
\(\overrightarrow{AB}=\overrightarrow{CD}\)
Cho hình vuông ABCD cạnh a, tâm O. Tính độ dài của các vectơ \(\overrightarrow{AB}+\overrightarrow{AD}\) , \(\overrightarrow{AB}+\overrightarrow{AC}\) , \(\overrightarrow{AB}-\overrightarrow{AD}\)
Cho hình vuông ABCD có độ dài cạnh AB = 2a.Tính độ dài | \(\overrightarrow{AB}+\overrightarrow{AD}\) |
Cho hình vuông ABCD tâm O
a. Tìm các vectơ bằng \(\overrightarrow{OA}\)
b. Tính \(\overrightarrow{OA}+\overrightarrow{OB}\)
c. Tính \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
d. Tìm vectơ đối của \(\overrightarrow{AB}\)
cho hình chữ nhật ABCD có AB=2a, BC=a\(\sqrt{2}\). Tính độ dài véc tơ\(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{BC}\)
Cho tam giác ABC đều cạnh a, trực tâm H. Tính độ dài của các vectơ \(\overrightarrow{HA},\overrightarrow{HB},\overrightarrow{HC}\)
Cho hình chữ nhật ABCD có cạnh AB=3cm AD=4cm vầ M là một điểm bất kì tính độ dài các vectơ:
\(\overrightarrow{u}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-3\overrightarrow{MD}\) và
\(\overrightarrow{v}=\)\(MA-3\overrightarrow{MB}+4\overrightarrow{MC}-2\overrightarrow{MD}\)
1) CHo tứ giác ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
CM: \(\overrightarrow{NP}=\overrightarrow{MQ}\)
\(\overrightarrow{PQ}=\overrightarrow{NM}\)
Cho tứ giác ABCD gọi M , N lần lượt là trung điểm của AD,BC ; gọi I và J lần lượt là trung điểm của AC , BD .CMR :
a) \(\overrightarrow{AB}+\overrightarrow{DC}=2\overrightarrow{MN}\) b) \(\overrightarrow{AB}+\overrightarrow{CD}=2.\overrightarrow{IJ}\) c) \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{AB}\) d) \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}\)
Trong mặt phẳng Oxy cho ba vectơ \(\overrightarrow{a}\) = (0;1) ; \(\overrightarrow{b}\) = (-1;2) ; \(\overrightarrow{c}\) = (-3;-2) tọa độ của vectơ \(\overrightarrow{U}\) = 3\(\overrightarrow{a}\) +2\(\overrightarrow{b}\) -4\(\overrightarrow{c}\) là...