vẽ đồ thị hàm số bậc 2 y=-1/2*x^2+x+3/2
Cho hàm số y=f(x). Đồ thị hàm số y=f'(x) trên [-5;3] như hình vẽ
Cho hàm số y=x^2 +bx+c có đồ thị P , P đi qua A(0;6) có trục đối xứng x=1 Tìm các khoảng đồng biến , nghịch biến và vẽ đồ thị x= -x^2+4x
hãy nêu cách dựng đồ thị hàm số y = |x(x-2)| từ đồ thị hàm số y = x^2
cho hàm số \(y=x^2-2x+3\) có đồ thị (P). lập bảng biến thiên và vẽ đồ thị (P). từ đó tìm các giá trị của tham số m sao cho phương trình \(x^2-2x+3-m=0\) có 2 nghiệm phân biệt
Lập bảng biến thiên và vẽ đồ thị của các hàm số :
a. \(y=x^2-2x-1\)
b. \(y=-x^2+3x+2\)
biết rằng đồ thị hàm số \(y=x^2-6x\) cắt đồ thị hàm số\(y=-x^2-4\) tại 2 điểm \(A\left(x_A;y_A\right)\) và \(B\left(x_B;y_B\right)\). tính \(y_A+y_B\)
tìm tất cả các giá trị của m sao cho đồ thị hàm số cắt đồ thị hàm số tại \(y=x^2+2mx+4\) đúng 2 điểm phân biệt có hoành độ thỏa mãn
tìm tất cả các giá trị của m sao cho đồ thị hàm số \(y=\left(m+1\right)x^2+2x+3m-2\) cắt đồ thị hàm sại đúng 2 điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+2x_2=1\)