a, \(y=2-x\left(d\right)\)
\(x=0\Rightarrow y=2\Rightarrow A\left(0;2\right)\in\left(d\right)\Rightarrow OA=2\)
\(x=2\Rightarrow y=0\Rightarrow B\left(2;0\right)\in\left(d\right)\Rightarrow OB=2\)
Gọi H là chân đường vuông góc kẻ từ O lên \(\left(d\right)\)
Ta có: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{8}\Rightarrow OH=2\sqrt{2}\)
b, \(y=2x+1\left(d'\right)\)
\(x=0\Rightarrow y=1\Rightarrow B'\left(0;1\right)\in\left(d'\right)\Rightarrow OB'=1\)
\(x=-\frac{1}{2}\Rightarrow y=0\Rightarrow A'\left(-\frac{1}{2};0\right)\in\left(d\right)\Rightarrow OA'=\frac{1}{2}\)
Gọi H' là chân đường vuông góc kẻ từ O lên \(\left(d\right)\)
Ta có: \(\frac{1}{OH'^2}=\frac{1}{OA'^2}+\frac{1}{OB'^2}=\frac{1}{\frac{1}{4}}+\frac{1}{1}=5\Rightarrow OH'=\frac{\sqrt{5}}{5}\)