Trong mp (ABCD), nối NP kéo dài cắt AD tại G
Trong mp (SAD), nối MG cắt SD tại Q
\(\Rightarrow Q=SD\cap\left(MNP\right)\)
b.
Trong mp (ABCD), gọi E là giao điểm NP và AC
Trong mp (SAC), nối ME cắt SO tại F
\(\Rightarrow F=SO\cap\left(MNP\right)\)
Trong mp (ABCD), nối NP kéo dài cắt AD tại G
Trong mp (SAD), nối MG cắt SD tại Q
\(\Rightarrow Q=SD\cap\left(MNP\right)\)
b.
Trong mp (ABCD), gọi E là giao điểm NP và AC
Trong mp (SAC), nối ME cắt SO tại F
\(\Rightarrow F=SO\cap\left(MNP\right)\)
Cho 2 đường thẳng song song d1 và d2 . Trên d1 lấy 11 điểm phân biệt , d2 lấy 7 điểm phân biệt
a) Có bao nhiêu tam giác có đỉnh là các điểm nói trên
b) Có bao nhiêu hình thang có đỉnh là các điểm nói trên
Cho một đa giác lồi có 20 đường chéo . Tính số giao điểm của các đường chéo của đa giác đó
Cho 35 đường thẳng trên cùng một mặt phẳng, hỏi chúng chia mặt phẳng thành
bao nhiêu phần trong các trường hợp sau đây:
1) Có 8 đường thẳng song song với nhau và 8 đường thẳng đồng quy tại 1 điểm.
2) Nếu vẽ thêm 1 đường thẳng đi qua giao điểm của 8 đường đồng quy và không
song song với các đường thẳng đã cho.
Cho một đa giác đều bảy cạnh, kẻ các đường chéo. Hỏi có bao nhiêu giao điểm của các đường chéo trừ các đỉnh
?
Mọi người giải giúp em với ạ
Cho mp OXY có vecto v=(-3;1). điểm M=(1;-4) và đường thẳng d:3x-2y+1=0
a) Xác định tọa độ T véctơ v(M)=M'
b)Tìm pt đường thẳng d' là ảnh của d qua phép tịnh tiến qua vecto v
Cho n là số nguyên dương lớn hơn hay bằng 2. Kí hiệu A = {1, 2, …, n}. Tập con B của tập A được gọi là 1 tập "tốt" nếu B khác rỗng và trung bình cộng của các phần tử của B là 1 số nguyên. Gọi Tn là số các tập tốt của tập A. Chứng minh rằng Tn – n là 1 số chẵn.
Cho đa giác đều \(A_1A_2.....A_n,\) (\(n\ge2\), n nguyên) nội tiếp đường tròn O. Biết rằng số tam giác có 3 đỉnh trong 2 n điểm \(A_1,A_2,....,.A_{2n}\) gấp 20 lần số hình chữ nhật có 4 đỉnh trong 2n điểm \(A_1A_2.....A_n\). Tìm n
Cho 15 điểm phân biệt, trong đó có 6 điểm thẳng hàng, trong số 9 điểm còn lại không có 3 điểm nào
thẳng hàng và không có 2 điểm nào thẳng hàng với bất kì 1 điểm nào đó trong 6 điểm nêu ở trên. Hỏi có bao
nhiêu tam giác mà các đỉnh của chúng lấy từ 15 điểm đã cho?