Đặt biểu thức là P
- Với \(m=1\Rightarrow P=\left(x+y+1\right)^2+\left(x+y+2\right)^2\)
\(P=\left(x+y+1\right)^2+\left(x+y+1\right)^2+2\left(x+y+1\right)+1\)
\(P=2\left(x+y+1\right)^2+2\left(x+y+1\right)+1\)
\(P=\frac{1}{2}\left[2\left(x+y+1\right)+1\right]^2+\frac{1}{2}\ge\frac{1}{2}\)
\(P_{min}=\frac{1}{2}\) khi \(x+y=-\frac{3}{2}\)
- Với \(m\ne1\) , do \(\left\{{}\begin{matrix}\left(mx+y+1\right)^2\ge0\\\left(x+my+m+1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow P\ge0\)
\(P_{min}=0\) khi \(\left\{{}\begin{matrix}mx+y+1=0\\x+my+m+1=0\end{matrix}\right.\)