Cho △ABC cân tại A có AH là đường cao. Lấy E và K lần lượt là trung điểm của AB và AC.
a) Chứng minh: EK là đường trung bình của △ABC.
b)Chứng minh: Tứ giác BEKC là hình thang cân.
c) Đường thắng EK cắt AH tại I. Chứng minh: I là trung điểm AH
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh MN là đường trung bình của tam giác ABC.
b) Chứng minh tứ giác MNCB là hình thang cân.
c) Cho BC = 6cm. Tính MN.
Cho tam giác ABC cân tại A, AM là đường trung tuyến. Gọi N là trung điểm AC
a/ Cho biết MN = 3 cm. Tính độ dài cạnh AB
b) Chứng minh : Tứ giác ABMN là hình thang
Cho cân tại A, AM là đường trung tuyến. Gọi N là trung điểm AC
a/ Cho biết MN = 3 cm. Tính độ dài cạnh AB
b) Chứng minh : Tứ giác ABMN là hình thang
Cho tam giác ABC cân tại A, AM là đường trung tuyến. Gọi N là trung điểm AC A/ cho biết MN= 3cm. Tính độ dài cạnh AB B/ chứng minh tứ giác ABMN là hình thang
Cho hình thang ABCD có đáy AB > đáy CD và hai đường chéo AC và BD vuông
góc. Trên đáy AB lấy M sao cho AM có độ dài bằng đường trung bình của hình thang
ABCD. Chứng minh : CA là đường phân giác góc MCD
Cho tứ giác ABCD có E , F lần lượt là trung điểm của AD , BC và 2EF = AB + CD . Chứng minh ABCD là hình thang
Bài 4 (3,0 điểm) Cho ∆ABC cân tại A. Gọi M và N lần lượt là trung điểm của cạnh AB và cạnh AC.
1) Chứng minh BC = 2MN.
2) Chứng minh tứ giác MNCB là hình thang cân.
3) Gọi I, K lần lượt là trung điểm của MN và BC. O là giao điểm của MC và NB. Chứng minh: A, I, O, K thẳng hàng.
Cho tam giác ABC vuông tại A . Gọi D là trung điểm của AB, E là trung điểm của BC .
Chứng minh :Tứ giác ADEC là hình thang vuông
Cho tam giác ABC cân tại A . Gọi M,N lần lượt là trung điểm của AB,AC.
Chứng minh: tứ giác MNCB là hình thang cân