Xét ΔABC có
E,H lần lượt là trung điểm của AB,AC
=>EH là đường trung bình của ΔABC
=>EH//BC và EH=BC/2
Xét ΔBDC có
F,G lần lượt là trung điểm của DB,DC
=>FG là đường trung bình của ΔBDC
=>FG//BC và FG=BC/2
EH//BC
FG//BC
Do đó: EH//FG
EH=BC/2
FG=BC/2
Do đó: EH=FG
Xét tứ giác EHGF có
EH//FG
EH=FG
Do đó: EHGF là hình bình hành
Xét ΔBAD có
E,F lần lượt là trung điểm của BA,BD
=>EF là đường trung bình
=>EF//AD và EF=AD/2
Để EHGF là hình vuông thì EH=EF và EH\(\perp\)EF
EH=EF
EH=BC/2
EF=AD/2
Do đó: BC=AD
EH\(\perp\)EF
EH//BC
Do đó: EF\(\perp\)BC
EF\(\perp\)BC
EF//AD
Do đó: BC\(\perp\)AD
Vậy: Khi BC=AD và BC\(\perp\)AD thì EFGH là hình vuông