Tứ giác ABCD có B và C nằm trên đường tròn có đường kính là AD. Tính độ dài CD
biết rằng AD=8, AB=BC=2
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
cho tứ giác ABCD từ một điểm M trên đường chó BD kẻ MP, MQ lần lượt song song với BC và AD (P\(\in\)CD , Q\(\in\) AB)
c/m \(\dfrac{MP}{BC}+\dfrac{MQ}{AD}=1\)
Cho tứ giác ABCD có A = C = 90 độ. Vẽ CH vuông góc AB. Biết rằng đường chéo AC là đường phân giác góc A và CH = 6 cm. Tính diện tích tứ giác ABCD
Cho hình thang ABCD, AB//CD, AC vuông góc với BD a, CM: AB^2+CD^2= AD^2+ BC^2 b, AC^2+BD^2=(AB+CD)^2c, Kẻ đường cao AH , , đường trung bình MN của hình thang ABCD biết BD=9cm, AC=12cm. Tính diện tích tứ giác AMHN
Cho tứ giác ABCD, O là giao điểm 2 đường chéo. C/m:
\(\dfrac{AB+BC+CB+AD}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
Cho tứ giác ABCD. Gọi K là trung điểm AB, I là trung điểm CD. Biết KI=1/2CD. CHứng minh: AD+BC≥CD
Cho tam giác ABC có góc B, C nhọn, đường phân giác AD. Biết \(AD=AB=\sqrt{5}\), BD=2cm. Tính độ dài DC
Tứ giác ABCD có AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm, đường chéo BD = 6cm. Chứng minh rằng:
a) ABD và BCD là hai tam giác đồng dạng.
b) Tứ giác ABCD là hình thang.