Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.
Có hai trường hợp để tìm số thỏa mãn:
Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.
Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.
Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.
Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)
Số có 3 chữ số chia hết cho 3 khi:
TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số
TH2: 3 chữ số của nó thuộc 3 tập phân biệt:
Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách
Hoán vị 3 chữ số có: \(3!=6\) cách
\(\Rightarrow27.6=162\) số
Như vậy có tổng cộng \(18+162=180\) số thỏa mãn