Bài 6: Hệ thức lượng trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Từ bãi biển Vũng Chùa, Quảng Bình, ta có thể ngắm được Đảo Yến. Hãy đề xuất một các xác định bề rộng của hòn đảo (theo chiều ta ngắm được).

Kiều Sơn Tùng
24 tháng 9 2023 lúc 15:29

Tham khảo:

 

Bước 1:

Đánh dấu vị trí quan sát tại điểm A, chiều rộng của hòn đảo kí hiệu là đoạn BC.

Gọi H là hình chiếu của A trên BC.

Trên tia đối của tia AH, lấy điểm M, ghi lại khoảng cách AM = a.

 

Bước 2:

Tại A, quan sát để xác định các góc \(\widehat {BAC} = \alpha ,\;\widehat {HAC} = \beta \).

Tiếp tục quan sát tại M, xác định góc \(\widehat {HMC} = \gamma \).

Bước 3: Giải tam giác AMC, tính AC.

AM = a, \(\widehat {AMC} = \widehat {HMC} = \gamma \) và \(\widehat {MAC} = {180^o} - \beta \)

\( \Rightarrow \widehat {ACM} = {180^o} - \gamma  - \left( {{{180}^o} - \beta } \right) = \beta  - \gamma \)

Áp dụng định định lí sin trong tam giác AMC ta có:

\(\frac{{AC}}{{\sin AMC}} = \frac{{AM}}{{\sin ACM}} \Rightarrow AC = \sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}\)

Bước 4:

 \(\widehat {ABC} = {90^o} - \widehat {HAB} = {90^o} - (\alpha  - \beta )\)  

Áp dụng định lí sin cho tam giác ABC ta có:

\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} \Rightarrow BC = \sin \alpha .\frac{{\sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}}}{{\sin \left( {{{90}^o} - (\alpha  - \beta )} \right)}}.\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết