sai đề rồi bạn (P) phải là y = x^2 chứ
sai đề rồi bạn (P) phải là y = x^2 chứ
bài 1 Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = 2(m-1)x + 3 và parabol (P): y = x2 3) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi m 4) Gọi x1, x2 là hoành độ các giao điểm của (d) và (P). Tìm m để |x1| + |x2| = 4
Bài 10: Trong mặt phẳng toạ độ Oxy cho parabol (P) : y = x2 và đường thẳng (d):y = mx +4. a) Chứng minh rằng với mọi giá trị của m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A( X1;y1) và B(x2;y2). b) Tìm tất cả các giá trị của m sao cho y mũ 2 1 + y mũ 2 2 = 7 mũ 2
em cần gấp ạ, cảm ơn ạ
Cho đường thẳng (d): y=mx-2m+4 và parabol (P): y=x^2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1,x2 sao cho x1^2+x2^2 có giá trị nhỏ nhất.
Cho parabol (P): y = -x2 và đường thẳng (d): y = (2 - m).x + m - 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1| + x22 = 2
Trên mặt phẳng Oxy cho đường thẳng (d):y=(2m+1)x-\(m^2\)-m+6 và Parabol (P): y=\(x^2\)
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1\);\(x_2\) sao cho: \(\left|x_1^2-x_2^2\right|\)= 50
Em cần giải vội ạ
Cho parabol (P): y = x2 và đường thẳng d: y = mx + m +1 (với m là tham số) trong mặt phẳng tọa độ Oxy.
a) Với giá trị nào của m thì d tiếp xúc với (P)? Khi đó hãy tìm tọa độ tiếp điểm.
b) Tìm các giá trị của m để d cắt (P) tại hai điểm phân biệt nằm khác phía đối với trục tung, có hoành độ x1, x2 thỏa mãn điều kiện 2x1 - 3x2 = 5.
Cho parabol (P): y = − x2 và đường thẳng (d): y = (3 − m)x + 2 − 2m (m là tham số).
a) Chứng minh rằng với m ≠ −1 thì (d) luôn cắt (P) tại 2 điểm phân biệt A, B.
b) Gọi yA, yB lần lượt là tung độ các điểm A, B. Tìm m để |yA − yB| = 2.
Cho đường thẳng (d): y=mx-2m+4 và parabol (P): y=x^2. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1,x2 sao cho x1^2+x2^2 có giá trị nhỏ nhất.
Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = m/2x + m/2 - 1 và parabol (P): y = 1/2x2
Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa x21-2/x1-1 . x22-2/x2-1 = 4
Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (2m-1)x + m-1 và parabol (P): y = -2x2
Tìm m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 thỏa 4x21 + 4x22 + 2x1x2 = 1