Trong mặt phẳng Oxy, cho \(\overrightarrow{v}\left(2;0\right)\) và điểm \(M\left(1;1\right)\)
a) Tìm tọa độ của điểm M' là hình ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow{v}\) và phép đối xứng qua trục Oy
) Trong mặt phẳng tọa độ Oxy cho điểm M (3; 2) .Tìm ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v(1;5) và phép quay tâm O góc quay 900
Trong mp Oxy cho điểm A(1,2),đường thẳng d co pt:2x-3y+1=0 và véc tơ
v=(-3,1)
a)Tìm ảnh của A,(d) qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay 90 độ và phép tịnh tiến theo v
b) tìm điểm M sao cho A là ảnh của M qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay- 90 độ và phép tịnh tiến theo v
c) tìm điểm d’ sao cho d là ảnh của d’ qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay- 90 độ và phép tịnh tiến theo v
Trong mặt phẳng Oxy cho các điểm \(A\left(-3;2\right);B\left(-4;5\right);C\left(-1;3\right)\)
a) Chứng minh rằng các điểm \(A'\left(2;3\right);B'\left(5;4\right);C'\left(3;1\right)\) theo thứ tự là ảnh của A, B, C qua phép quay tâm O góc \(-90^0\)
b) Gọi tam giác \(A_1B_1C_1\) là ảnh của tam giác ABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc \(-90^0\) và phép đối xứng qua trục Ox. Tìm tọa độ các đỉnh của tam giác \(A_1B_1C_1\) ?
4. Trong mặt phẳng Oxy, cho đường thẳng d: x − 3y + 1 = 0 và điểm I(−3; 1).
(a) Tìm ảnh của điểm M(1; −2) qua phép đối xứng tâm I.
(b) Tìm ảnh của đường thẳng ∆: 2x + y − 1 = 0 qua phép đối xứng tâm I.
(c) Tìm ảnh của đường tròn (C): (x − 2)2 + (y + 3)2 = 9 qua phép đối xứng
Cho hình vuông ABCD có tâm I. Trên tia BC lấy điểm E sao cho BE = AI
a) Xác định một phép dời hình biến A thành B và I thành E
b) Dựng ảnh của hình vuông ABCD qua phép dời hình ấy
Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục ?
Cho đường tròn \(\left(O\right)\) và hai điểm \(A,B\). Một điểm \(M\) thay đổi trên đường tròn \(\left(O\right)\) . Tìm quỹ tích điểm \(M'\) sao cho \(\overrightarrow{MM'}+\overrightarrow{MA}=\overrightarrow{MB}\)
Chứng minh rằng : Nếu một phép dời hình biến tam giác ABC thành tam giác A'B'C' thì nó cũng biến trọng tâm của tam giác ABC tương ứng thành trọng tâm của tam giác A'B'C' ?