\(\overrightarrow{BC}=\left(4;4\right);\overrightarrow{AC}=\left(-3;7\right)\)
\(\Rightarrow\) Các đường thẳng vuông góc với BC và AC lần lượt nhận \(\overrightarrow{n_1}=\left(1;1\right)\) và \(\overrightarrow{n_2}=\left(-3;7\right)\) là các vtpt
a/ Phương trình đường cao AH của BC:
\(1\left(x-4\right)+1\left(y+1\right)=0\Leftrightarrow x+y-3=0\)
Phương trình đường cao BK của AC:
\(-3\left(x+3\right)+7\left(y-2\right)=0\Leftrightarrow-3x+7y-23=0\)
Tọa độ trực tâm là nghiệm của hệ: \(\left\{{}\begin{matrix}x+y-3=0\\-3x+7y-23=0\end{matrix}\right.\)
b/ Gọi M là trung điểm BC \(\Rightarrow M\left(-1;4\right)\)
Phương trình trung trực BC:
\(1\left(x+1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-3=0\)
Gọi N là trung điểm AC \(\Rightarrow N\left(\frac{5}{2};\frac{5}{2}\right)\)
Phương trình trung trực AC:
\(-3\left(x-\frac{5}{2}\right)+7\left(y-\frac{5}{2}\right)=0\Leftrightarrow-3x+7y-10=0\)
Tọa độ tâm đường tròn ngoại tiếp là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\-3x+7y-10=0\end{matrix}\right.\)