Ôn tập chương V

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhã Uyên Đinh Bùi

Trong mặt phẳng oxy cho 2 điểm A(2;4), B(1;1) tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại B

Đỗ Tuệ Lâm
8 tháng 3 2022 lúc 5:50

Giả sử \(C\)  cần tìm có tọa độ là \(\left(x;y\right)\). Để tam giác ABC vuông cân tại B ta phải có:

\(\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=0\\\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|\end{matrix}\right.\)  với \(\overrightarrow{BA}=\left(1;3\right)\)  và \(\overrightarrow{BC}=\left(x-1;y-1\right)\)

Điều đó có nghĩa là:

\(\left\{{}\begin{matrix}1.\left(x-1\right)+3\left(y-1\right)=0\\1^2+3^2=\left(x-1\right)^2+\left(y-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\\left(3-3y\right)^2+\left(y-1\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-3y\\10y^2-20y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C\left(4;0\right)\\C\left(-2;2\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Hồ Ngọc Minh Anh
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
baoanh mai
Xem chi tiết
Thủy Channel
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
nguyenthanhtra
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Minh Phong
Xem chi tiết