Ta có: \(\overrightarrow {AB} = (5 - 4;7 - 6; - 4 + 5) = (1;1;1)\).
Vì ABCD.A'B'C'D' là hình hộp nên ABCD là hình bình hành. Do đó \(\overrightarrow {AB} = \overrightarrow {DC} \).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{5 - {x_D} = 1}\\{6 - {y_D} = 1}\\{ - 4 - {z_D} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_D} = 4}\\{{y_D} = 5}\\{{z_D} = - 5}\end{array}} \right.\)
Vậy D(4;5;-5).
Ta có: \(\overrightarrow {DD'} = (2 - 4;0 - 5;2 + 5) = ( - 2; - 5;7)\).
Vì ABCD.A'B'C'D' là hình hộp nên A’ADD’ là hình bình hành. Do đó \(\overrightarrow {DD'} = \overrightarrow {AA'} \).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{{x_{A'}} - 4 = - 2}\\{{y_{A'}} - 6 = - 5}\\{{z_{A'}} + 5 = 7}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{A'}} = 2}\\{{y_{A'}} = 1}\\{{z_{A'}} = 2}\end{array}} \right.\)
Vậy A’(2;1;2).
Vì ABCD.A'B'C'D' là hình hộp nên B’BDD’ là hình bình hành. Do đó \(\overrightarrow {BB'} = \overrightarrow {DD'} \).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{{x_{B'}} - 5 = - 2}\\{{y_{B'}} - 7 = - 5}\\{{z_{B'}} + 4 = 7}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{B'}} = 3}\\{{y_{B'}} = 2}\\{{z_{B'}} = 3}\end{array}} \right.\)
Vậy B’(3;2;3).
Vì ABCD.A'B'C'D' là hình hộp nên C’CDD’ là hình bình hành. Do đó \(\overrightarrow {CC'} = \overrightarrow {DD'} \).
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{{x_{C'}} - 5 = - 2}\\{{y_{C'}} - 6 = - 5}\\{{z_{C'}} + 4 = 7}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{C'}} = 3}\\{{y_{C'}} = 1}\\{{z_{C'}} = 3}\end{array}} \right.\)
Vậy C’(3;1;3).