Trong không gian với hệ toạ độ \(Oxyz\), cho đường thẳng \(\Delta_m:\left\{{}\begin{matrix}x=1-m+\left(m-1\right)t\\y=3-m+\left(m+1\right)t\\z=m-mt\end{matrix}\right.\) với \(m\) là tham số và điểm \(A\left(5;3;1\right)\). Viết phương trình đường thẳng \(\Delta_m\), biết rằng \(d\left(A;\Delta_m\right)\) nhỏ nhất.
\(A.\left\{{}\begin{matrix}x=4t\\y=4-2t\\z=-t\end{matrix}\right.\)
\(B.\left\{{}\begin{matrix}x=5+4t\\y=3-2t\\z=2-t\end{matrix}\right.\)
\(C.\left\{{}\begin{matrix}x=4t\\y=4+6t\\z=-t\end{matrix}\right.\)
\(D.\left\{{}\begin{matrix}x=5+t\\y=3+t\\z=2+2t\end{matrix}\right.\)
Để tìm phương trình đường thẳng Δm, ta thay các giá trị của x, y, z vào phương trình của Δm:
x = 1 - m + (m - 1)t
y = 3 - m + (m + 1)t
z = m - mt
Thay A(5, 3, 1) vào phương trình của Δm:
5 = 1 - m + (m - 1)t
3 = 3 - m + (m + 1)t
1 = m - mt
Từ đó, ta có hệ phương trình:
4 = (m - 1)t
0 = 2t
-4 = 2mt
Giải hệ phương trình này, ta được t = 0 và m = 1.
Thay t = 0 và m = 1 vào phương trình của Δm, ta có:
x = 1 - 1 + (1 - 1) * 0 = 0
y = 3 - 1 + (1 + 1) * 0 = 2
z = 1 - 1 * 0 = 1
Vậy phương trình đường thẳng Δm là:
x = 0
y = 2
z = 1
Do đó, đáp án là A.