Vì mặt phẳng \(\left( \alpha \right)\) vuông góc với trục Oz nên mặt phẳng \(\left( \alpha \right)\) nhận \(\overrightarrow n \left( {0;0;1} \right)\) làm một vectơ pháp tuyến. Mà mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {1;2; - 4} \right)\) nên phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\) là: \(0\left( {x - 1} \right) + 0\left( {y - 2} \right) + 1.\left( {z + 4} \right) = 0 \Leftrightarrow z + 4 = 0\)
Đúng 0
Bình luận (0)