Bài 17. Phương trình mặt cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình mặt cầu? Xác định tâm và tính bán kính của mặt cầu đó.

a) x2 + y2 + z2 – 2x – 5z + 30 = 0;

b) x2 + y2 + z2 – 4x + 2y – 2z = 0;

c) x3 + y3 + z3 – 2x + 6y – 9z – 10 = 0;

d) x2 + y2 + z2 + 5 = 0.

datcoder
27 tháng 10 lúc 22:19

a) Phương trình đã cho tương ứng với \(a = 1,b = 0,c = \frac{5}{2},d = 30\).

Ta có: \({a^2} + {b^2} + {c^2} - d = {1^2} + {0^2} + {\left( {\frac{5}{2}} \right)^2} - 30 = \frac{{ - 91}}{4} < 0\). Do đó, phương trình đã cho không phải là phương trình của một mặt cầu.

b) Phương trình đã cho tương ứng với \(a = 2,b =  - 1,c = 1,d = 0\).

Ta có: \({a^2} + {b^2} + {c^2} - d = {2^2} + {\left( { - 1} \right)^2} + {1^2} - {0^2} = 6 > 0\). Do đó, phương trình đã cho là phương trình của một mặt cầu có tâm \(\left( {2; - 1;1} \right)\) và bán kính \(R = \sqrt 6 \).

c) Phương trình đã cho không phải là phương trình mặt cầu.

d) Phương trình đã cho tương ứng với \(a = 0,b = 0,c = 0,d = 5\).

Ta có: \({a^2} + {b^2} + {c^2} - d = {0^2} + {0^2} + {0^2} - {5^2} =  - 25 < 0\). Do đó, phương trình đã cho không phải là phương trình của một mặt cầu.