Trong không gian Oxyz cho mặt phẳng \(\left(P\right):x+y+z--3=0\) và đường thẳng d : \(\left\{{}\begin{matrix}x=2+t\\y=-1-2t\\z=-t\end{matrix}\right.\)
a) Viết phương trình mặt phẳng (Q) chứa đường thẳng d sao cho giao tuyến của (P) và (Q) vuông góc với d
b) Gọi M là giao điểm của d với (P). Tìm tọa độ của điểm N nằm trên (P) sao cho đường thẳng MN vuông góc với d và \(MN=3\sqrt{14}\)
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là